Strain Engineering of Materials in Low Dimensions: Application of the Generalized Bloch Theorem

发布时间：2019-12-29

**报告人：**张东波 教授

**报告人所在单位：**核科学与技术学院 北京师范大学

**报告时间：**12月24日（周二），上午10:00-11:00

**讲座题目：**Strain Engineering of Materials in Low Dimensions: Application of the Generalized Bloch Theorem

electromechanical response, i.e., the coupling of electronic properties with structural deformation. This indicates

that novel electronic properties can be obtained by strain manipulation on electronic states. The relevant studies

have led to an emergent area, i.e., strain engineering. However, theoretical research such as first-principles

calculation mainly focuses on homogeneous strain and the exploration of inhomogeneous strain is rare. Largely, this

is because that inhomogeneous strain destroys the translational symmetry of crystal, which the traditional

approaches of electronic energy band calculations rely on. We developed a new approach of energy band calculation

named as Generalized Bloch Theorem, coupled with self-consistent charge density-functional tight-binding. This

new approach can effectively deal with low dimensional materials under torsional or bending deformations.

In this talk, I will introduce the essential idea of the generalized Bloch theorem and illustrate application of it in low

dimensional materials with several examples, including strain induced half-metallicity in graphene nanoribbon, the

modulation of dopant distribution in silicon nanowires by twisting.

**报告人简介：**

D.-B. Zhang obtained his PhD in 2010 and was a postdoc associate from 2011 to 2013 at the University of

Minnesota, USA. In 2014 he was awarded the “Thousand Youth Talents Plan” and joined the Beijing Computational

Science Research Center as an Assistant Professor. Since 2018, he joined Beijing Normal University as a Professor

in condensed matter physics. His research is essentially in the area of computational materials science, with focus on

thermal properties of materials under extreme conditions. He is also interested in the strain engineering of low

dimensional materials. He published more than 40 peer-reviewed papers in Physical Review Letters, National

Science Review, Physical Review B, and so on.